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Abstract
A theoretical investigation is made of acoustic wave propagation in one-
dimensional phononic bandgap structures made of slender tube loops pasted
together with slender tubes of finite length according to a Fibonacci sequence.
The band structure and transmission spectrum is studied for two particular cases.
(i) Symmetric loop structures, which are shown to be equivalent to diameter-
modulated slender tubes. In this case, it is found that besides the existence of
extended and forbidden modes, some narrow frequency bands appear in the
transmission spectra inside the gaps as defect modes. The spatial localization
of the modes lying in the middle of the bands and at their edges is examined by
means of the local density of states. The dependence of the bandgap structure
on the slender tube diameters is presented. An analysis of the transmission
phase time enables us to derive the group velocity as well as the density
of states in these structures. In particular, the stop bands (localized modes)
may give rise to unusual (strong normal) dispersion in the gaps, yielding fast
(slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube
loop structures, where the loops play the role of resonators that may introduce
transmission zeros and hence new gaps unnoticed in the case of simple diameter-
modulated slender tubes. The Fibonacci scaling property has been checked for
both cases (i) and (ii), and it holds for a periodicity of three or six depending
on the nature of the substrates surrounding the structure.

1. Introduction

There has been considerable recent interest in the propagation of classical waves—
electromagnetic and acoustic—in periodically structured environments in analogy to electrons
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in semiconductor crystals [1–4]. These materials, called photonic bandgap (PBG) and acoustic
bandgap (ABG) crystals, allow the propagation of light, sound and vibration to be regulated.
Each of these systems is composed of periodically modulated dielectric and elastic/acoustic
media respectively. The propagation of acoustic waves in a so-called ‘phononic crystal’
was investigated theoretically [5] and experimentally [6] in two-dimensional (2D) and three-
dimensional (3D) composite systems constituted by periodic inclusions of a given material in
a host matrix. Such systems can exhibit an absolute ABG where the propagation of sound
waves and ultrasonic vibrations is inhibited in any direction of the space. ABG materials
can have many practical applications such as elastic/acoustic filters [7], ultrasonic silent
blocks [8], acoustic mirrors, and improvement in the design of ultrasonic transducers using
piezoelectric composites [9]. Studies of lower dimensional systems such as 1D periodic
layered media [10, 11] and periodic waveguide systems with different geometries [12–20] are
conducted as analogues of 2D and 3D systems and for applications in their own right. These
structures are attractive since their production is more feasible at any wavelength scale and they
require only simple analytical and numerical calculations. Besides periodic systems, quasi-
regular ones with constituents arranged in quasi-periodic fashion have been intensively studied
in the last years [21]. Since the pioneering work of Merlin et al [22] on non-periodic Fibonacci
GaAs–AlAs superlattices, much attention has been paid to observe the exotic phenomena of
Fibonacci systems [23, 24]. Interesting properties of these systems have been deduced [25, 26]
mainly by theoretical studies based on simple 1D models. Another important motivation for
studying these structures comes from recognizing that deterministic quasiperiodic systems
may exhibit localization, such as the Anderson localization, of sound and vibration [27]. Such
localization is a feature related to any wave when there exists disorder in the structures. It has
been reported, for example, in acoustic waves [28–30] and optical waves [31]. However, the
localization effect was not immediately apparent in the former case, whereas it was achieved
in the latter one.

In a previous paper [14], some of the authors have studied the propagation of acoustic waves
in 1D comb structures composed of dangling side branches periodically grafted at N equidistant
sites on slender tubes. These theoretical results are confirmed by simple experiments using an
impulse response technique [17], showing that it is possible via impulse reshaping to achieve
group velocities more than twice the speed of sound. Similar experiments [18, 19] have been
performed on periodically structured waveguides in the presence of a defect, showing the
existence of slow group velocity of sound associated with the high dispersion in the vicinity of
a narrow transmission band defect mode which could be of use in developing strong acoustic
fields necessary for macrosonics applications. Recently [20], a different structure called a
serial loop structure made of slender tubes pasted together periodically by asymmetric slender
loops has been studied theoretically by some of the authors. In particular, it was demonstrated
that these structures may present large gaps and are good candidates for ABG materials. The
purpose of this paper is to give an extension of this work when the slender tube loops and the
slender tubes are arranged in a quasi-periodic way. The quasiperiodic structures are generally
known as substitutional sequences built of two different building blocks A and B. One of the
best known examples is the Fibonacci sequence Sk+1 = Sk Sk−1 with the initial conditions
S1 = A, S2 = AB where k is the generation number. For example S3 = ABA, S4 = ABAAB,
S5 = ABAABABA, . . .. In this work, block A is made of a slender tube characterized by a
length d1 and a section a1, whereas block B is made of a slender tube loop where the two arms
of the ring have different lengths and sections, d2 and a2 (medium 2) and d3 and section a3

(medium 3). The finite structure is sandwiched between two slender tubes of sections as . We
shall call it a Fibonacci serial loop structure (FSLS) (see for example figure 1 for the fifth
generation structure).
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Figure 1. Schematic illustration of the 1D finite fifth Fibonacci structure made of A and B blocks.
Block A is constructed from a slender tube of section a1 and length d1, whereas block B is a slender
tube loop with two different arms of lengths d2 and d3 and sections a2 and a3 respectively. The
finite structure is sandwiched between two slender tubes of sections as .

Motivated by the recent experimental works on periodic acoustic waveguides [13, 16–19],
the specific emphasis in this work is twofold.

(i) In the case of symmetric FSLSs, we examine some transmission scaling properties of
Fibonacci 1D structures depending on the nature of the substrates surrounding the finite
structure. In addition, we show that besides the transmission amplitude an analysis of the
phase time enables us to determine the density of states as well as the group velocity in
these structures.

(ii) In the case of asymmetric FSLSs, we show that besides the gaps present in symmetric
FSLSs, some new gaps appear in the band structures as the consequence of the transmission
zeros induced by asymmetric loops which play the role of resonators. The Fibonacci
scaling property has been shown to be also present in the case of asymmetric loops.

The rest of the paper is organized as follows: in section 2 we give a brief presentation of the
method of calculation employed here, which is based on the Green function method. Section 3
is devoted to the discussion of the numerical results for symmetric and asymmetric FSLSs with
different geometries. The final section contains the concluding remarks.

2. Method of theoretical and numerical calculation

2.1. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the interface response theory of
continuous media, which allows calculation of the Green function of any composite material.
In what follows, we present the basic concept and the fundamental equations of this theory [32].
Let us consider any composite material contained in its space of definition D and formed out
of N different homogeneous pieces located in their domains Di . Each piece is bounded by an
interface Mi , adjacent in general to j (1 � j � J ) other pieces through subinterface domains
Mi j . The ensemble of all these interface spaces Mi will be called the interface space M of the
composite material. The elements of the Green function g(DD) of any composite material
can be obtained from [32]

g(DD) = G(DD) − G(DM)G−1(M M)G(M D)

+ G(DM)G−1(M M)g(M M)G−1(M M)G(M D), (1)

where G(DD) is the reference Green function formed out of truncated pieces in Di of the bulk
Green functions of the infinite continuous media and g(M M), the interface element of the
Green function of the composite system. The inverse of g(M M) is obtained as a superposition
of the different [gi(Mi , Mi )]−1, where gi(Mi , Mi ) is the interface Green function for each
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constituent i of the composite system [32]. The knowledge of the inverse of g(M M) is
sufficient to calculate the interface states of a composite system through the relation [32]

det[g−1(M M)] = 0. (2)

Moreover if U(D) represents an eigenvector of the reference system, equation (1) enables the
calculation of the eigenvectors u(D) of the composite material

u(D) = U(D) − U(M)G−1(M M)G(M D) + U(M)G−1(M M)g(M M)G−1(M M)G(M D).

(3)

ln equation (3), U(D), U(M), and u(D) are row vectors. Equation (3) provides a description
of all the waves reflected and transmitted by the interfaces, as well as the reflection and
transmission coefficients of the composite system. ln this case, U(D) is a bulk wave launched
from one of the substrate media [33].

2.2. Inverse surface Green functions of the elementary constituents

We consider an infinite homogeneous isotropic slender tube i characterized by its characteristic
impedance Zi = ρiv0/ai where ρi is the mass density, ai the cross-section and v0 the
longitudinal speed of sound. The Fourier transformed Green function between two points
x and x ′ of this slender tube is

Gi (x, x ′) = 1
2 jZi e−αi |x−x′ |, (4)

with

αi = j
ω

v0
, (5)

ω being the angular frequency of the wave and j = √−1.
Before addressing the problem of the FSLS, it is helpful to know the surface elements of

its elementary constituents, namely, the Green function of a finite slender tube of length d1, of
a loop made of two tubes 2 and 3 of lengths d2 and d3 respectively, and of a semi-infinite tube
s. The finite slender tube is bounded by two free surfaces located at x = − d1

2 and + d1
2 . These

surface elements can be written in the form of a (2 × 2) matrix g1(M M), within the interface
space M1 = {− d1

2 , + d1
2 }. The inverse of this matrix takes the following form [33]:

[g1(M M)]−1 =
( C1

Z1 S′
1

− 1
Z1 S′

1

− 1
Z1 S′

1

C1
Z1 S′

1

)
. (6)

In the same way, the inverse of the Green function of the loop (2), (3) is obtained as

[g2,3(M M)]−1 =
( C2

Z2 S′
2

+ C3
Z3 S′

3
− 1

Z2 S′
2
− 1

Z3 S′
3

− 1
Z2 S′

2
− 1

Z3 S′
3

C2
Z2 S′

2
+ C3

Z3 S′
3

)
, (7)

where Ci = cos(ωi di/v0) and S′
i = sin(ωi di/v0) in equations (6) and (7) (i = 1, 2, 3).

The inverse of the surface element of a semi-infinite tube s characterized by its impedance
Zs = ρsv0/as is given by

[gs(0, 0)]−1 = − j

Zs
. (8)

From equation (7) one can deduce that a symmetric loop made of identical tubes of lengths
d2 = d3 and impedances Z2 = Z3 (i.e., a2 = a3) is equivalent to a single segment of length
d2 and characterized by the impedance Z2/2 = ρ2v0/2a2 (i.e., a simple slender tube with a
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double cross-section). Therefore, the structure of figure 1 becomes equivalent to a diameter-
modulated waveguide array. The experimental evidence of the existence of bandgaps and
defect modes in 1D periodic acoustic systems constructed by two alternative slender tubes
of different cross-sections was presented recently [18, 19]. However, the advantage of the
symmetric loop structure lies in the fact that it is not necessary to have two segments of
different natures to realize the contrast between the two constituent media of each block. This
property could be of potential interest in acoustical waveguide structures. It should be pointed
out that the validity of our results is subject to the requirement

√
ai � di , λ, i.e., the cross

section of the slender tubes being negligible compared to their length and to the propagation
wavelength λ. The assumption of monomode propagation is then satisfied.

2.3. Transmission coefficient

The 1D FSLS waveguide can be considered as a finite number of blocks A and B pasted together
according to the Fibonacci sequence. The interface domain is made of all the connection
points between finite tubes and tube loops. Within the total interface space of the finite
FSLS, the inverse of the matrix giving all the interface elements of the Green function g is
a finite tridiagonal matrix formed by the linear superposition of the elements [gi(M M)]−1

(equations (6) and (7)). The explicit expression of the Green function elements of the finite
FSLS may be written as

g−1
f (M M) =

(
g−1

f (�, �) g−1
f (�, r)

g−1
f (r, �) g−1

f (r, r)

)
(9)

where the labels � (left) and r (right) refer to the two interfaces bounding the FSLS. The
four matrix elements are real quantities, functions of the different elements of the constituent’s
elements gi(M M) (equations (6) and (7)). If the finite composite system is sandwiched between
two homogeneous waveguides labelled s, then an incident plane wave launched from the left
waveguide gives rise to the transmission function in the right waveguide as

CT = j2g−1
f (l, r)/Zs

g−1
f (�, �)g−1

f (r, r) − [g−1
f (l, r)]2 − (1/Zs)2 − j(g−1

f (�, �) + g−1
f (r, r))/Zs

. (10)

The transmission function can be written in an explicit complex form as CT = a + jb =√
T ejϕ where T is the transmission coefficient, ϕ = arctan(b/a)± mπ is the phase associated

with the transmission field and m is an integer. The first derivative of ϕ with respect to the
frequency is related to the delay time taken by the wave to traverse the structure. This quantity,
called the phase time, is defined by [34, 35]

τϕ = dϕ

dω
. (11)

From equations (10) and (11), one can deduce that the phase time can be written as

τϕ = d

dω
arg[g−1

f (�, �)g−1
f (r, r) − (g−1

f (�, r))2 − (1/Zs)
2

− j(g−1
f (�, �) + g−1

f (r, r))/Zs]−1 +
d

dω
arg[g−1

f (�, r)]. (12)

Furthermore, the DOS of the present composite system from which we have subtracted
the DOS of the same volumes of the semi-infinite tubes s is given by [32, 35]

	n(ω) = 1

π

d

dω
arg[g−1

f (�, �)g−1
f (r, r) − (g−1

f (�, r))2 − (1/Zs)
2

− j(g−1
f (�, �) + g−1

f (r, r))/Zs]−1. (13)
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From equations (12) and (13) one can deduce two cases, namely, the following.

(i) The case of symmetrical loop structures that do not present transmission zeros (i.e.,
g−1

f (�, r) �= 0 in equation (10)). Then arg(g−1
f (�, r)) = 0 and τϕ = π	n(ω).

(ii) The case of asymmetrical loop structures, where transmission zeros occur at some
frequencies we denote by ωn (i.e., g−1

f (�, r) = 0 in equation (10), n = 1, 2, . . .).
Then the transmission coefficient changes sign at ωn and its phase exhibits a jump of π .
In other words, the second term at the right-hand side of equation (12) becomes [36]

d

dω
arg(g−1

f (�, r)) = π
∑

n

sgn

[
d

dω
(g−1

f (�, r))ω=ωn

]
δ(ω − ωn) (14)

where sgn means the sign function. This result means that τϕ �= π	n(ω) as τϕ

(equation (12)) may exhibit δ functions at the transmission zeros that do not exist in
the variation of the DOS (equation (13)). Both cases (i) and (ii) will be illustrated below
in relation to symmetric and asymmetric FSLSs respectively.

3. Illustrative examples

We focus in this paper on homogeneous FSLSs where the tubes are filled with the same fluid
but have different lengths and cross sections. In addition, we shall emphasize two particular
cases depending on the lengths of the arms constituting the slender loops.

(i) The case where the loops in each block are symmetrical and identical (i.e., d2 = d3 and
a2 = a3). As mentioned above, the symmetric loop becomes equivalent to a simple
slender tube with dB = d2 = d3 and aB = 2a2 in block B. We shall also call d1 = dA and
a1 = aA in the slender tube of block A.

(ii) The case where the tubes constituting the two arms of the loop are supposed to be filled
with the same fluid but with different lengths (i.e., a2 = a3 and d2 �= d3 but keeping the
total length of the loop d2 + d3 unchanged).

3.1. Case of symmetric FSLS

As mentioned above, the FSLS (figure 1) becomes equivalent to a diameter-modulated
waveguide constituted by two slender tubes A and B characterized by their lengths dA = d1

and dB = d2 and their cross-sections aA = a1 and aB = 2a2 respectively. Figures 2(b)–(f)
show the transmission coefficient as a function of the reduced frequency � = ωd1/v0 for the
Fibonacci generations S5 (8 blocks), S6 (13 blocks), S7 (21 blocks), S8 (34 blocks) and S9

(55 blocks) respectively. The finite FSLS is sandwiched between two media of material of
type A (i.e., as = aA). Due to the finiteness of the systems the importance of the boundary
conditions (the media limiting the structure) cannot be ignored. Thus we shall see at the end of
this section that different results are obtained when the surrounding media are of type B (i.e.,
as = aB). Two regions of frequencies may be distinguished in figures 2(b)–(e): the regions
where the transmission falls rapidly to zero as the generation number increases (these regions
correspond to the forbidden modes, pseudo-bandgaps) and the regions where the transmission
is more noticeable around � = 0, π, 2π, . . . (these regions correspond to the allowed modes,
pseudo-bands). In the middle of the gaps around π/2, 3π/2, . . . some peaks appear as defect
modes. The number of these modes increases as a function of the generation number. As a
matter of comparison, we have also given the transmission spectrum of the periodic structure
(figure 2(a)) where the stop bands do not show, as expected, any new features. These results
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Figure 2. The variation of the transmission coefficient as a function of the reduced frequency
� = ωd1/v0 for (a) the periodic structure and (b)–(f) different generations Sk (k = 5–9) of the
Fibonacci loop structure respectively. The lengths of the different tubes are such that d1 = d2 = d3
and a1 = a2 = a3. The sections of the two media surrounding the structure are such that as = a1.

show that the FSLSs present similar features as the periodic structure, but with new ones
inside the gaps. These resonances present a certain recursive order which is a characteristic
of Fibonacci systems. This property, called the scaling relation [37], has been interpreted as
a sign of localization of the waves in Fibonacci systems. Kohmoto et al [37] have shown the
existence of an invariant I which remains constant at every step of the recursive procedure, its
expression being given by [37]

I = 1

4

(
ZA

ZB
− ZB

ZA

)2

sin2(ωdA/v0) sin2(ωdB/v0), (15)

where ZA = ρAv0/aA and ZB = ρBv0/aB are the impedances of the two slender tubes
constituting the FSLS. Also, it has been demonstrated [37] that one can expect scaling around
δ = ωdA/v0 = ωdB/v0 = (2m + 1)π/2 where the quasiperiodicity is most effective (m
is an integer). This implies that the transmission coefficient should exhibit a self-similar
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Figure 3. The local density of states (in arbitrary units) as a function of the space position x/d1 for
three frequencies belonging to figure 2(f): (a) � = π (middle of the band), (b) � = 0.69π (band
edge), and (c) � = 0.5π (central frequency). The inset of (b) corresponds to the LDOS associated
with the periodic structure at � = 0.62π . The inset of (c) corresponds to the LDOS associated
with the 12th generation at � = 0.5π .

behaviour around the central frequency �c = (2m + 1)π/2 with Tj+3 = Tj (the period of
the transmission coefficient is three recursions). The scale behaviour of the transmission
coefficient is characterized by the scale factor [37]

f =
√

1 + 4(1 + I )2 + 2(1 + I ). (16)

For the central frequency �c = (2m + 1)π/2, I is maximum, i.e. I = 0.526 and thus
f = 6.4061. The self-similarity of the transmission amplitude is clearly shown around �c in
the insets of figures 2(b) and (e) for the S5 and S8 generations and figures 2(c) and (f) for the
S6 and S9 generations respectively. Note the scale change of the frequency axis for spectra S8

and S9 as compared to S5 and S6 respectively. These results are analogous to those found by
Gellermann et al [31] on dielectric Fibonacci multilayers.

It is well established that outside the Fibonacci bandgaps the waves are critically
localized [38]. In contrast with the fully disordered (Anderson) localized case, these critically
localized modes decay more weakly than exponentially, most likely by a power law, and have
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Figure 4. Phase time as a function of the reduced frequency. The other parameters are those of
figure 2.

a rich self-similar structure [39]. In order to understand the spatial localization of the different
modes in figure 2, we plot in figure 3 the LDOS as a function of the space position x for the
modes lying at � = π , 0.69π , and 0.5π in figure 2(f) (ninth generation). The LDOS reflects
the square modulus of the pressure field inside the structure. These modes could be classified
respectively as the following.

(i) Extended modes as shown in figure 3(a) for the completely transparent mode (� = π)
for which the transmission is unity [38]. The wavefunction, namely the pressure field
distribution, follows the structure of the Fibonacci sequence (see the inset of figure 3(a)).
This pressure distribution is analogous to the lattice-like wavefunction in the electronic
problem [40] and the electric field in the electromagnetic problem [41].

(ii) Band-edge modes as shown in figure 3(b) for the mode � = 0.69π . The LDOS shows
(figure 3(b)) a noticeable similarity to the band edge resonances occurring in the periodic
structure (see the inset of figure 3(b)) but is less regular. Band edge resonances in photonic
periodic crystals are shown not to be localized states since their extension scales linearly
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Figure 5. The same as figure 4 but for the group velocity.

with the system size and they do not decay to zero [42, 43]. In contrast, the Fibonacci
band edge resonances will decay via a power law due to the Fibonacci disorder [44].

(iii) Self-similar modes as shown in figure 3(c) for the mode lying at � = 0.5π . The
corresponding LDOS shows a self-similar behaviour [42, 45] around the main peak every
three generations (see the inset of figure 3(c) displayed for the 12th generation).

Another important quantity that characterizes the interaction of the incident phonon with
the different modes in the FSLS is the transmission phase time. This quantity is interpreted as
the time needed for a phonon to complete the transmission process. Figure 4 gives the phase
time as a function of the reduced frequency � for the same structures as in figure 2. Apart from
the bandgap edges, the modes lying inside the gaps give rise to large phase time in comparison
with the modes lying inside the bulk bands. One can also notice that the phase time shows
the same self-similarities (three recursions) as the transmission amplitude around the central
frequency �c. This is illustrated in the insets of figure 4 although the intensities of the peaks
are not similar. As demonstrated in section 2.3, the phase time is equivalent to the density of
states in these 1D phononic crystals which do not exhibit transmission zeros [30, 33]. From the
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aB/aA) of the eighth Fibonacci generation. The other parameters are the same as in figure 2. The
dots are obtained from the maxima of the phase time.

phase time one can also deduce the group velocity vg = L/τϕ [46], where L is the total length
of the structure, i.e., the sum of the lengths of the A and B blocks constituting the structure
(see figure 3). The existence of localized waves in FSLSs may be used as a tool to reduce
the propagation speed of waves in such structures. Indeed, as argued recently [18, 19], the
presence of a single defect in an otherwise periodic system made of two alternating different
slender tubes may considerably reduce the group velocity in a narrow frequency band below
the normal propagation speed in the tubes. Now, by introducing more than one defect in these
structures as in Fibonacci systems, one can obtain a narrow frequency band where the velocity
may be slower. These results are illustrated in figures 5(b)–(f), where we have plotted the
group velocity vg versus the frequency for the same structures as in figures 2 and 4. In the
case of periodic structures (figure 5(a)), an anomalous dispersion occurs inside the gaps and
velocities greater than the speed of sound are expected [17–19]. This result still remains for
the Fibonacci quasi-periodic structures, although a small group velocity (vg ≈ 0.2v0) lower
than the normal speed of sound in the tubes (figures 5(b)–(f)) is obtained around the central
frequencies. This value is the same as the one found experimentally by Robertson et al [19]
in diameter-modulated waveguides. The group velocity clearly shows a self-similarity around
the central frequency �c as shown in the insets of figure 5. The slower group velocity may be
explained by the time spent by the phonon (trapping time) inside some regions of the quasi-
periodic structure (see figure 3(c)) before its transmission [44, 46]. Another interesting result
in figures 4 and 5 concerns the behaviour of the phase time and the group velocity near the
bandgap edges. Indeed, it is well known that in infinite 1D periodic systems the density of
modes approaches infinity at the band edge and the group velocity becomes very small. In
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Figure 7. The same as figure 2 but the two media surrounding the structure are such that as = aB.

a finite system, however, the acoustic mode density is an oscillating function rather than a
monotonic function (figure 4(a)). The enhancement of the phase time (density of states) at the
band edges induces a small group velocity (vg ≈ 0.2v0) (figure 5). Inside the pass-bands, the
group velocity is equal to v0, which is the normal speed of wave propagation in the tubes.

In order to show the effect of the ratio of the cross-sections of the B and A blocks, we
plotted in figure 6 the dispersion curves (the frequency � as a function of aB/aA or equivalently
ZA/ZB) for the eighth generation. These frequencies (dots) are obtained from the maxima of
the phase time (density of states). Figure 6 clearly shows that the bulk modes are strongly
dependent upon aB/aA. When aB = aA (i.e., ZA = ZB) the transmission is unity and the stop
bands close. For aB �= aA the gap widths increase, giving rise to large gaps for small and big
values of aB/aA, and also the narrow bands associated with localized modes inside the gaps
become thinner. As mentioned at the beginning of this section, the results obtained above
depend strongly on the nature of the media surrounding the finite FSLS. Indeed, when these
media are of type B instead of A (i.e., as = aB), figures 7 (transmission) and 8 (phase time)
clearly show noticeable differences as compared to figures 2 and 4 respectively. In particular,
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there is a significant difference between the behaviours of the modes lying inside the gaps
of these two structures. One can notice that the transmission (figure 7) and the phase time
(figure 8), sketched for different generations, present self-similarities for a periodicity of six
instead of three and for a scaling factor f 2 ≈ 41 instead of f (see the insets of figures 7(b)
and (f) and 8(b) and (f)). We have also found similar results in the case where the medium from
which the incident wave is launched is of type A and the medium where the wave is transmitted
is of type B and vice versa. These results are in agreement with those found theoretically by
other authors [41, 47] on optical multilayered media by using the transfer matrix method and
the complex effective wavenumber.

3.2. Case of asymmetric FSLS

Recently [20], some of the authors have studied stopping and filtering waves in asymmetric
periodic serial loop structures. In what follows, we address the problem of an asymmetric
FSLS where the lengths of the two arms constituting the loops are different. In particular,
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Figure 9. The same as figure 2 but for an asymmetric Fibonacci serial loop structure such that
	L = 0.25d1 (left panel) and 	L = 1.3d1 (right panel).

we suppose that the total length of the loop L = d2 + d3 is kept constant and equal to 2d1,
while the difference 	L = d2 − d3 between the lengths of both tubes inside the loop is a
varying parameter. Figure 9 gives the transmission as a function of the reduced frequency �

for 	L = 0.25d1 (left panel) and 	L = 1.3d1 (right panel) respectively. Figures 9(a) and (f)
clearly show successive minima in the transmission amplitude for the third generation (S3).
These minima are introduced by the asymmetric loop sandwiched between two semi-infinite
slender tubes of type A. Their frequencies are given by [33]

sin(ωL/2v0) = 0 and cos(ω	L/2v0) = 0. (17)

For example, the transmission zeros lying at � = π in figures 9(a) and (b) are given
by the former equation, which means that they are independent of 	L; on the other hand,
the transmission zero at � = 0.77π in figure 9(f) is given by the latter equation. Now, by
increasing the generation numbers (figure 9), the transmission zeros enlarge into gaps giving
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Figure 10. The same as figure 9 but for the transmission phase time.

rise to a large gap as is the case for 	L = 1.3 (figures 9(g)–(l)). At the same time other normal
gaps appear which are introduced by the quasi-periodicity of the structure. One can also
notice that the three-recursion scaling property still remains valid around the central frequency
in the asymmetric FSLS (see for example the insets of figures 9(c) and (e)). As mentioned
in section (2.3), the transmission zeros give rise to abrupt phase change by π in the phase of
the transmission function or negative delta peaks in the transmission phase time as illustrated
in figure 10. These results show, in accordance with section (2.3), that the phase time in
asymmetric FSLS can differ from the density of states by the occurrence of additional delta
peaks [33]. Also, the negative phase time may give rise to negative group velocities around the
transmission zeros especially if the structures present a small absorption to enlarge the delta
peaks [33]. In order to give a better insight into the effect of 	L on the dispersion curves, we
plotted in figure 11 the frequencies versus 	L/d1 for the eighth generation. The frequencies
(dots) are obtained from the maximum of the phase time. The dashed horizontal and curved
lines correspond to the frequencies at which the transmission through a single asymmetric loop
is equal to zero (see equation (17)). In the particular case where 	L = 0 (i.e. d2 = d3) the
asymmetric FSLS becomes symmetric and therefore the gaps around � = 1.2, 2, 4.3 and 5.1



4260 H Aynaou et al

Figure 11. The projected band structure of the eighth Fibonacci generation (reduced frequency �

as a function of 	L = d2 − d3 for L = d2 + d3 = 2d1). The dots are obtained from the maxima of
the transmission phase time. The dashed curves indicate the frequencies at which the transmission
through a single asymmetric loop vanishes.

are introduced by the periodicity of the structure. These stop bands are not dependent on the
variation of 	L. However, when 	L increases, some new gaps of lozenge pattern appear at
the crossings of the horizontal and curved dashed lines. These gaps are the consequences of
the transmission zeros induced by the asymmetric loops (figures 9 and 10), which play the role
of resonators. There are also some secondary narrow minigaps along the dashed curved lines.
For 	L = 2d1 (i.e., d2 = 2d1 and d3 = 0), called tangent loops [33], one can show that each
loop is equivalent to two dangling side branches of lengths d2/2 = d1. It is worth noticing
that the gaps induced by the transmission zeros are without analogue in the case of layered
media [48].

4. Summary and conclusions

In this paper, we have presented theoretical evidence for the localization of acoustic waves in
waveguide structures made of slender loop tubes pasted together by slender tubes following the
Fibonacci sequence. In the case of symmetric loops, the FSLS may play the role of a simple
diameter-modulated tube, which enables us to check easily different localization properties of
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Fibonacci 1D layered-like media. In particular, we have shown that the Fibonacci transmission
scaling property holds for a periodicity of three or six depending on the nature of the substrates
surrounding the finite structure. An analysis of the local density of states clearly shows the
spatial localization of the different modes propagating through the FSLS. When the loops
are asymmetrical, the latter play the role of resonators that may introduce transmission zeros
and hence new gaps unnoticed in the case of layered media. A study of the phase of the
transmission function enables us to deduce several properties on the wave propagation through
such structures as the dispersion curves, the phase times and therefore the density of states
as well as the group velocities. In particular, the three- and six-cyclic Fibonacci scalings are
also shown to be valid for the phase time and the group velocity. In addition, we have shown
that the propagation of acoustic waves in FSLS may give rise to unusual (strong normal)
dispersion inside the gaps yielding fast (slow) group velocities. We hope that these findings
can be verified in an easily realizable set of experiments [13, 18, 19]. Such systems can find
some useful applications in the designing of transducers and acoustic filters.

As a final remark, let us emphasize that the calculations presented here for the acoustic
waves can be transposed straightforwardly to the propagation of electromagnetic waves in
an FSLS when each constituent is characterized by a local dielectric constant ε(ω) and an
electromagnetic impedance. This is because both the equations of motion and the boundary
conditions in the above problems involve similar mathematical equations [33]. Therefore,
the general behaviour and conclusions obtained in this paper will prove to be useful for the
electromagnetic physical problem [49]. Indeed, the loop in block B of the FSLS acts similarly
to a Mach–Zehnder interferometer in optics. Our model is also valid for other quasiperiodic
structures such as Thue–Morse, Rudin–Shapiro and double-period systems [21].
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